SeqAn3  3.0.3
The Modern C++ library for sequence analysis.
to_simd.hpp
Go to the documentation of this file.
1 // -----------------------------------------------------------------------------------------------------
2 // Copyright (c) 2006-2021, Knut Reinert & Freie Universität Berlin
3 // Copyright (c) 2016-2021, Knut Reinert & MPI für molekulare Genetik
4 // This file may be used, modified and/or redistributed under the terms of the 3-clause BSD-License
5 // shipped with this file and also available at: https://github.com/seqan/seqan3/blob/master/LICENSE.md
6 // -----------------------------------------------------------------------------------------------------
7 
13 #pragma once
14 
15 #include <seqan3/std/algorithm>
16 #include <seqan3/std/iterator>
17 #include <seqan3/std/ranges>
18 
30 
31 namespace seqan3::detail
32 {
33 
59 template <std::ranges::view urng_t, simd::simd_concept simd_t>
60 class view_to_simd : public std::ranges::view_interface<view_to_simd<urng_t, simd_t>>
61 {
62 private:
63 
64  static_assert(std::ranges::forward_range<urng_t>,
65  "The underlying range must model forward_range.");
66  static_assert(std::ranges::input_range<std::ranges::range_value_t<urng_t>>,
67  "Expects the value type of the underlying range to be an input_range.");
68  static_assert(std::default_initializable<std::ranges::range_value_t<urng_t>>,
69  "Expects the inner range to be default constructible.");
70  static_assert(semialphabet<std::ranges::range_value_t<std::ranges::range_value_t<urng_t>>>,
71  "Expects semi-alphabet as value type of the inner range.");
72 
76  using inner_range_type = std::ranges::range_value_t<urng_t>;
78  using scalar_type = typename simd_traits<simd_t>::scalar_type;
80  using max_simd_type = simd_type_t<uint8_t, simd_traits<simd_t>::max_length>;
82 
87  static constexpr bool fast_load = std::ranges::contiguous_range<inner_range_type> &&
88  std::sized_sentinel_for<std::ranges::iterator_t<inner_range_type>,
89  std::ranges::sentinel_t<inner_range_type>> &&
90  sizeof(alphabet_rank_t<std::ranges::range_value_t<inner_range_type>>) == 1;
91 
93  static constexpr uint8_t chunk_size = simd_traits<simd_t>::length;
95  static constexpr uint8_t chunks_per_load = simd_traits<simd_t>::max_length / chunk_size;
97  static constexpr uint8_t total_chunks = fast_load ? (chunks_per_load * chunks_per_load) : 1;
99  static constexpr auto alphabet_size = alphabet_size<std::ranges::range_value_t<inner_range_type>>;
101 
102  // Forward declare class' iterator type. See definition below.
103  struct iterator_type;
104 
105 public:
106 
110  constexpr view_to_simd() = default;
111  constexpr view_to_simd(view_to_simd const &) = default;
112  constexpr view_to_simd(view_to_simd &&) = default;
113  constexpr view_to_simd & operator=(view_to_simd const &) = default;
114  constexpr view_to_simd & operator=(view_to_simd &&) = default;
115  ~view_to_simd() = default;
116 
121  constexpr view_to_simd(urng_t urng, scalar_type const padding_value = alphabet_size) :
122  urng{std::move(urng)},
123  padding_simd_vector{simd::fill<simd_t>(padding_value)},
124  padding_value{padding_value}
125  {
126  // Check if the size is less or equal the simd size.
127  if (std::ranges::distance(urng) > chunk_size)
128  throw std::invalid_argument{"The size of the underlying range must be less than or equal to the size of "
129  "the given simd type!"};
130  }
131 
133  template <typename other_urng_t>
135  requires (!std::same_as<std::remove_cvref_t<other_urng_t>, view_to_simd>) &&
136  (!std::same_as<other_urng_t, urng_t>) &&
137  std::ranges::viewable_range<other_urng_t>
139  constexpr view_to_simd(other_urng_t && urng, scalar_type const padding_value = alphabet_size) :
140  view_to_simd{views::type_reduce(std::forward<other_urng_t>(urng)), padding_value}
141  {}
143 
148  constexpr iterator_type begin() noexcept
149  {
150  return {*this};
151  }
152 
154  constexpr void begin() const noexcept = delete;
155 
157  constexpr std::default_sentinel_t end() noexcept
158  {
159  return std::default_sentinel;
160  }
161 
163  constexpr void end() const noexcept = delete;
165 
167  constexpr bool empty() const noexcept
169  requires std::ranges::forward_range<inner_range_type>
171  {
172  return std::ranges::all_of(urng, [] (auto & rng)
173  {
174  return std::ranges::empty(rng);
175  });
176  }
177 
184  constexpr size_t size() const noexcept
186  requires std::ranges::sized_range<inner_range_type>
188  {
189  auto it = std::ranges::max_element(urng, [] (auto & lhs, auto & rhs)
190  {
191  return std::ranges::size(lhs) < std::ranges::size(rhs);
192  });
193 
194  return (it != std::ranges::end(urng)) ? (std::ranges::size(*it) + chunk_size - 1) / chunk_size : 0;
195  }
196 
197 private:
198 
199  urng_t urng{};
200  std::array<chunk_type, total_chunks> cached_simd_chunks{};
201  simd_t padding_simd_vector{};
202  scalar_type padding_value{};
203 };
204 
212 template <std::ranges::view urng_t, simd::simd_concept simd_t>
213 class view_to_simd<urng_t, simd_t>::iterator_type
214 {
215 public:
220  using value_type = reference;
221  using pointer = void;
222  using difference_type = ptrdiff_t;
223  using iterator_category = std::input_iterator_tag;
224  using iterator_concept = iterator_category;
226 
230  constexpr iterator_type() = default;
231  constexpr iterator_type(iterator_type const &) = default;
232  constexpr iterator_type(iterator_type &&) = default;
233  constexpr iterator_type & operator=(iterator_type const &) = default;
234  constexpr iterator_type & operator=(iterator_type &&) = default;
235  ~iterator_type() = default;
236 
245  constexpr iterator_type(view_to_simd & this_view) : this_view{&this_view}, current_chunk_pos{0}
246  {
247  // Initialise the iterator of the sub ranges.
248  size_t seq_id = 0;
249  for (auto it = std::ranges::begin(this_view.urng); it != std::ranges::end(this_view.urng); ++it, ++seq_id)
250  {
251  cached_iter[seq_id] = std::ranges::begin(*it);
252  cached_sentinel[seq_id] = std::ranges::end(*it);
253  }
254 
255  // The batch is empty and by default the constructed iterator is pointing to the end.
256  if (seq_id == 0)
257  return;
258 
259  // The batch is not empty but might not be full either.
260  // If a slot is supposed to be empty, it will be initialised with the iterator of the first sequence set to the
261  // end emulating an empty sequence.
262  auto sentinel_it = std::ranges::next(cached_iter[0], cached_sentinel[0]);
263  for (; seq_id < chunk_size; ++seq_id)
264  {
265  cached_iter[seq_id] = sentinel_it;
266  cached_sentinel[seq_id] = cached_sentinel[0];
267  }
268 
269  // Check if this is the final chunk already.
270  final_chunk = all_iterators_reached_sentinel();
271 
272  // Fetch the next available input characters from the sequences and transform them into simd vectors.
273  underflow();
274  }
276 
281  constexpr reference operator*() const noexcept
282  {
283  assert(this_view != nullptr);
284  return std::span{this_view->cached_simd_chunks[current_chunk_pos].begin(),
285  (current_chunk_pos == final_chunk_pos) ? final_chunk_size : chunk_size};
286  }
288 
293  constexpr iterator_type & operator++(/*pre-increment*/)
294  {
295  if constexpr (fast_load)
296  { // Check if cached chunks have been already consumed and we need to fetch the next chunks.
297  if (current_chunk_pos == final_chunk_pos)
298  {
299  underflow();
300  current_chunk_pos = 0;
301  }
302  else
303  {
304  ++current_chunk_pos;
305  }
306  }
307  else // In case fast load is not available only one chunk is filled at a time.
308  {
309  underflow();
310  }
311 
312  return *this;
313  }
314 
316  constexpr value_type operator++(int /*post-increment*/)
317  {
318  value_type tmp = this->operator*();
319  ++(*this);
320  return tmp;
321  }
323 
328  constexpr bool operator==(std::default_sentinel_t const &) const noexcept
329  {
330  return at_end;
331  }
332 
334  friend constexpr bool operator==(std::default_sentinel_t const &, iterator_type const & rhs) noexcept
335  {
336  return rhs.at_end;
337  }
338 
340  constexpr bool operator!=(std::default_sentinel_t const &) const noexcept
341  {
342  return !at_end;
343  }
344 
346  friend constexpr bool operator!=(std::default_sentinel_t const &, iterator_type const & rhs) noexcept
347  {
348  return !rhs.at_end;
349  }
351 
352 private:
363  auto unpack(max_simd_type const & row) const
364  {
365  if constexpr (chunk_size == simd_traits<max_simd_type>::length / 2) // upcast into 2 vectors.
366  {
367  return std::array{simd::upcast<simd_t>(extract_half<0>(row)), // 1. half
368  simd::upcast<simd_t>(extract_half<1>(row))}; // 2. half
369  }
370  else if constexpr (chunk_size == simd_traits<max_simd_type>::length / 4) // upcast into 4 vectors.
371  {
372  return std::array{simd::upcast<simd_t>(extract_quarter<0>(row)), // 1. quarter
373  simd::upcast<simd_t>(extract_quarter<1>(row)), // 2. quarter
374  simd::upcast<simd_t>(extract_quarter<2>(row)), // 3. quarter
375  simd::upcast<simd_t>(extract_quarter<3>(row))}; // 4. quarter
376  }
377  else if constexpr (chunk_size == simd_traits<max_simd_type>::length / 8) // upcast into 8 vectors.
378  {
379  return std::array{simd::upcast<simd_t>(extract_eighth<0>(row)), // 1. eighth
380  simd::upcast<simd_t>(extract_eighth<1>(row)), // 2. eighth
381  simd::upcast<simd_t>(extract_eighth<2>(row)), // 3. eighth
382  simd::upcast<simd_t>(extract_eighth<3>(row)), // 4. eighth
383  simd::upcast<simd_t>(extract_eighth<4>(row)), // 5. eighth
384  simd::upcast<simd_t>(extract_eighth<5>(row)), // 6. eighth
385  simd::upcast<simd_t>(extract_eighth<6>(row)), // 7. eighth
386  simd::upcast<simd_t>(extract_eighth<7>(row))}; // 8. eighth
387  }
388  else
389  {
390  return std::array{simd::upcast<simd_t>(row)};
391  }
392  }
393 
404  constexpr void split_into_sub_matrices(std::array<max_simd_type, simd_traits<max_simd_type>::length> matrix) const
405  {
406  auto apply_padding = [this] (simd_t const vec)
407  {
408  return (vec == simd::fill<simd_t>(static_cast<uint8_t>(~0))) ? this_view->padding_simd_vector : vec;
409  };
410 
411  // Iterate over the rows of the matrix
412  for (uint8_t row = 0; row < static_cast<uint8_t>(matrix.size()); ++row)
413  {
414  // split a row into multiple chunks of size `chunk_size`
415  auto chunked_row = unpack(matrix[row]);
416 
417  if constexpr (chunked_row.size() == 1)
418  {
419  this_view->cached_simd_chunks[0][row] = apply_padding(std::move(chunked_row[0]));
420  }
421  else // Parse the tuple elements and store them in the cached simd chunks.
422  {
423  static_assert(chunked_row.size() == chunks_per_load, "Expected chunks_per_load many simd vectors.");
424 
425  for (uint8_t chunk = 0; chunk < chunks_per_load; ++chunk) // store chunks in respective cached entries.
426  {
427  size_t idx = chunk * chunks_per_load + row / chunk_size;
428  this_view->cached_simd_chunks[idx][row % chunk_size] = apply_padding(std::move(chunked_row[chunk]));
429  }
430  }
431  }
432  }
433 
437  constexpr bool all_iterators_reached_sentinel() const noexcept
438  {
439  using std::get;
440 
441  return std::ranges::all_of(views::zip(cached_iter, cached_sentinel), [] (auto && iterator_sentinel_pair)
442  {
443  return get<0>(iterator_sentinel_pair) == get<1>(iterator_sentinel_pair);
444  });
445  }
446 
457  constexpr simd_t convert_single_column()
458  noexcept
459  {
460  simd_t simd_column{};
461  for (size_t idx = 0u; idx < chunk_size; ++idx)
462  {
463  if (cached_iter[idx] == cached_sentinel[idx])
464  {
465  simd_column[idx] = this_view->padding_value;
466  }
467  else
468  {
469  simd_column[idx] = static_cast<scalar_type>(seqan3::to_rank(*cached_iter[idx]));
470  ++cached_iter[idx];
471  }
472  };
473  return simd_column;
474  }
475 
486  template <typename array_t>
487  constexpr void update_final_chunk_position(array_t const & iterators_before_update) noexcept
488  {
489  size_t max_distance = 0;
490  for (auto && [it, sent] : views::zip(iterators_before_update, cached_sentinel))
491  max_distance = std::max<size_t>(std::ranges::distance(it, sent), max_distance);
492 
493  assert(max_distance > 0);
494  assert(max_distance <= (total_chunks * chunk_size));
495 
496  --max_distance;
497  final_chunk_pos = max_distance / chunk_size;
498  // first we should be able to check the chunk position.
499  final_chunk_size = (max_distance % chunk_size) + 1;
500  }
501 
503  constexpr void underflow()
505  requires fast_load
507  {
508  at_end = final_chunk;
509  if (at_end) // reached end of stream.
510  return;
511  // For the efficient load we assume at most one byte sized alphabets.
512  // Hence we can load `simd_traits<simd_t>::max_length` length many elements at once.
513  // Depending on the packing of `simd_t` we can prefetch blocks and store them in the `cached_simd_chunks`.
514  // E.g. assume `simd_t` with length 8 on SSE4 with max length 16.
515  // To fill the 16x16 matrix we need four 8x8 matrices.
516  // Thus, for the 8 sequences we need to load two times 16 consecutive bytes to fill the matrix, i.e. two loads
517  // see figure below.
518  //
519  // 0 1 ... 7 | 8 9 ... 15
520  // 0 [a00, a01, ..., a07]|[a08, a09, ..., a15] // first load of seq a reads 16 characters
521  // 1 [b00, b01, ..., b07]|[b08, b09, ..., b15] // first load of seq b reads 16 characters
522  // ... | ...
523  // 7 [g00, g01, ..., g07]|[g08, g09, ..., g15] // first load of seq g reads 16 characters
524  // ----------------------------------------
525  // 8 [a16, a17, ..., a23]|[a24, a25, ..., a31] // second load of seq a reads next 16 characters
526  // 9 [b16, b17, ..., b23]|[b24, b25, ..., b31] // second load of seq b reads next 16 characters
527  // ... | ...
528  // 15 [g16, g17, ..., g23]|[g24, g25, ..., g31] // second load of seq g reads next 16 characters
529  //
530  // This quadratic byte matrix can be transposed efficiently with simd instructions.
531  // If the target simd scalar type is bigger we can apply the same mechanism but have then 16 4x4 matrices
532  // (32 bit) or 256 2x2 matrices (64 bit).
533 
534  constexpr int8_t max_size = simd_traits<simd_t>::max_length;
536  decltype(cached_iter) iterators_before_update{cached_iter}; // Keep track of iterators before the update.
537  // Iterate over each sequence.
538  for (uint8_t sequence_pos = 0; sequence_pos < chunk_size; ++sequence_pos)
539  { // Iterate over each block depending on the packing of the target simd vector.
540  for (uint8_t chunk_pos = 0; chunk_pos < chunks_per_load; ++chunk_pos)
541  {
542  uint8_t pos = chunk_pos * chunk_size + sequence_pos; // matrix entry to fill
543  if (cached_sentinel[sequence_pos] - cached_iter[sequence_pos] >= max_size)
544  { // Not in final block, thus load directly from memory.
545  matrix[pos] = simd::load<max_simd_type>(std::addressof(*cached_iter[sequence_pos]));
546  std::advance(cached_iter[sequence_pos], max_size);
547  }
548  else // Loads the final block byte wise in order to not load from uninitialised memory.
549  {
550  matrix[pos] = simd::fill<max_simd_type>(~0);
551  auto & sequence_it = cached_iter[sequence_pos];
552  for (int8_t idx = 0; sequence_it != cached_sentinel[sequence_pos]; ++sequence_it, ++idx)
553  matrix[pos][idx] = seqan3::to_rank(*sequence_it);
554  }
555  }
556  }
557 
558  // Handle final chunk which might not end at an offset which is not a multiple of `chunk_size`.
559  final_chunk = all_iterators_reached_sentinel();
560 
561  if (final_chunk)
562  update_final_chunk_position(iterators_before_update);
563 
564  simd::transpose(matrix);
565  split_into_sub_matrices(std::move(matrix));
566  }
567 
569  constexpr void underflow()
571  requires (!fast_load)
573  {
574  at_end = final_chunk;
575  if (at_end) // reached end of stream.
576  return;
577 
578  decltype(cached_iter) iterators_before_update{cached_iter}; // Keep track of iterators before the update.
579  for (size_t i = 0; i < chunk_size; ++i)
580  this_view->cached_simd_chunks[0][i] = convert_single_column();
581 
582  final_chunk = all_iterators_reached_sentinel();
583 
584  if (final_chunk)
585  update_final_chunk_position(iterators_before_update);
586  }
587 
589  std::array<std::ranges::iterator_t<inner_range_type>, chunk_size> cached_iter{};
591  std::array<std::ranges::sentinel_t<inner_range_type>, chunk_size> cached_sentinel{};
593  view_to_simd * this_view{nullptr};
595  uint8_t final_chunk_size{chunk_size};
597  uint8_t final_chunk_pos{total_chunks - 1};
599  uint8_t current_chunk_pos{0};
601  bool final_chunk{true};
603  bool at_end{true};
604 };
605 
606 // ============================================================================
607 // to_simd_fn (adaptor definition)
608 // ============================================================================
609 
618 template <simd::simd_concept simd_t>
619 struct to_simd_fn
620 {
622  using padding_t = typename simd_traits<simd_t>::scalar_type;
623 
627  constexpr auto operator()(padding_t const padding_value) const noexcept
628  {
629  return detail::adaptor_from_functor{*this, padding_value};
630  }
631 
633  constexpr auto operator()() const noexcept
634  {
635  return detail::adaptor_from_functor{*this};
636  }
637 
643  template <std::ranges::range urng_t>
644  constexpr auto operator()(urng_t && urange, padding_t const padding_value) const noexcept
645  {
646  static_assert(std::ranges::forward_range<urng_t>,
647  "The underlying range in views::to_simd must model std::ranges::forward_range.");
648  static_assert(std::ranges::viewable_range<urng_t>,
649  "The underlying range in views::to_simd must model std::ranges::viewable_range.");
650  static_assert(std::ranges::input_range<std::ranges::range_value_t<urng_t>>,
651  "The value type of the underlying range must model std::ranges::input_range.");
652  static_assert(semialphabet<std::ranges::range_value_t<std::ranges::range_value_t<urng_t>>>,
653  "The value type of the inner ranges must model seqan3::semialphabet.");
654 
655  return view_to_simd<type_reduce_t<urng_t>, simd_t>{std::forward<urng_t>(urange), padding_value};
656  }
657 
662  template <std::ranges::range urng_t>
663  constexpr auto operator()(urng_t && urange) const noexcept
664  {
665  static_assert(std::ranges::forward_range<urng_t>,
666  "The underlying range in views::to_simd must model std::ranges::forward_range.");
667  static_assert(std::ranges::viewable_range<urng_t>,
668  "The underlying range in views::to_simd must model std::ranges::viewable_range.");
669  static_assert(std::ranges::input_range<std::ranges::range_value_t<urng_t>>,
670  "The value type of the underlying range must model std::ranges::input_range.");
671  static_assert(semialphabet<std::ranges::range_value_t<std::ranges::range_value_t<urng_t>>>,
672  "The value type of the inner ranges must model seqan3::semialphabet.");
673 
674  return view_to_simd<type_reduce_t<urng_t>, simd_t>{std::forward<urng_t>(urange)};
675  }
676 
678  template <std::ranges::range urng_t>
679  constexpr friend auto operator|(urng_t && urange, to_simd_fn const & me)
680  {
681  return me(std::forward<urng_t>(urange));
682  }
683 };
684 
685 } // namespace seqan3::detail
686 
687 namespace seqan3::views
688 {
689 
791 template <simd::simd_concept simd_t>
792 inline constexpr auto to_simd = detail::to_simd_fn<simd_t>{};
793 
794 } // namespace seqan3::views
Provides seqan3::detail::adaptor_from_functor.
T addressof(T... args)
T advance(T... args)
Provides algorithms to modify seqan3::simd::simd_type.
Adaptations of algorithms from the Ranges TS.
Core alphabet concept and free function/type trait wrappers.
T begin(T... args)
Provides various transformation traits used by the range module.
Provides type traits for working with templates.
T end(T... args)
T fill(T... args)
constexpr auto alphabet_size
A type trait that holds the size of a (semi-)alphabet.
Definition: concept.hpp:858
constexpr auto to_rank
Return the rank representation of a (semi-)alphabet object.
Definition: concept.hpp:155
auto operator|(validator1_type &&vali1, validator2_type &&vali2)
Enables the chaining of validators.
Definition: validators.hpp:1103
constexpr size_t size
The size of a type pack.
Definition: traits.hpp:151
constexpr auto get
A view calling get on each element in a range.
Definition: elements.hpp:114
constexpr auto chunk
A chunk view.
Definition: chunk.hpp:29
constexpr auto zip
A zip view.
Definition: zip.hpp:29
auto const move
A view that turns lvalue-references into rvalue-references.
Definition: move.hpp:74
constexpr auto type_reduce
A view adaptor that behaves like std::views::all, but type erases certain ranges.
Definition: type_reduce.hpp:158
The basis for seqan3::alphabet, but requires only rank interface (not char).
Provides C++20 additions to the <iterator> header.
The SeqAn namespace for views.
Definition: char_to.hpp:22
constexpr auto to_simd
A view that transforms a range of ranges into chunks of seqan3::simd vectors.
Definition: to_simd.hpp:792
SeqAn specific customisations in the standard namespace.
T operator!=(T... args)
Provides algorithms for meta programming, parameter packs and seqan3::type_list.
Adaptations of concepts from the Ranges TS.
Provides seqan3::simd::simd_concept.
Provides seqan3::simd::simd_type.
Provides seqan3::simd::simd_traits.
Provides seqan3::views::type_reduce.
Provides seqan3::views::zip.